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Abstract

In this paper, we de�ne the triplex numbers, a hypercomplex number system with some similarities

to the complex numbers. We construct an explicit isomorphism between T and R×C, which enables

one to study the properties of the triplex numbers in a natural setting.

In particular, we demonstrate a one-to-one correspondence between the sets of triplex roots of

polynomial functions with coe�cients in R and the sets of roots in R × C. As one consequence of

this correspondence, we �nd that given a polynomial f(x) with coe�cients in R, the set of roots in

the triplex numbers has cardinality |X0| · |Z0|, where X0 and Z0 are the sets of real and complex

roots, respectively.

1 Motivation

The triplex numbers are a hypercomplex number system obtained by adjoining to R two elements i /∈ R
and j /∈ R which satisfy the following relations:

i2 = j

j2 = i

ij = ji = 1.

Arithmetic is carried out in the usual fashion, while keeping in mind to obey the above rules for
dealing with the new units. An example calculation, where we multiply the triplex numbers 1 + j and
i+ j together:

(1 + j)(i+ j) = i+ j + ij + j2

= i+ j + 1 + i

= 1 + 2i+ j.

Any calculation involving addition and multiplication can be carried out with triplex numbers, the
result of which can always be �collapsed� to a triplex number of the form a+ bi+ cj. To use more precise
terminology, the triplex numbers are closed under addition and multiplication. This can be seen clearly
from De�nition 2.7 and De�nition 2.8.

It is also possible to perform division with triplex numbers. However, for reasons that will become
clear later in this paper, dividing with triplex numbers comes with some caveats. It is something that
must be done with the utmost care and precision, much like folding a shirt in the correct manner so as
to prevent the formation of wrinkles.

Nevertheless, let us pause for a moment and re�ect on what it is we have just seen. The triplex
numbers are a system of numbers which extend the real numbers, much like the complex numbers. One
could say that the complex numbers were borne from a sort of quest to give algebraic closure to the real
numbers. Similarly, more advanced number systems such as the quaternions were invented to facilitate
solving of problems that were di�cult with real numbers and complex numbers alone.

This begs the question: Do the triplex numbers o�er anything of value that the real numbers and the
complex numbers do not? To give our inquiry some clearer direction, we will consider polynomials over
R, that is, polynomials f(x) ∈ R[x] of the form f(x) = a0+a1x+a2x

2+ ...+anx
n, where a0, ..., an ∈ R,

and n ∈ N is the degree of the polynomial.
It is a well-known fact that C is an algebraically closed �eld, that is to say, polynomials with complex

(and hence, also with real) coe�cients always have at least one complex solution. In fact, counting
multiplicity, a polynomial of degree n has exactly n complex roots, which is certainly a much more
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profound insight than the fact that there is always at least one. Nevertheless, it can be shown that these
two conditions are in fact equivalent. This fact about polynomial roots is occasionally referred to as the
�Fundamental theorem of algebra.�

The implications of this fact for our investigation of the triplex numbers are multifold. For one, we
would certainly be hard-pressed to �nd a polynomial equation not solvable in C which turns out to be
solvable in T, because such a polynomial cannot exist. However, it may certainly be the case that there
exists some polynomial which is not solvable in R, but which turns out to be solvable in T. It may also
be the case that certain kinds of polynomial equations become easier to solve due to the properties of
T, perhaps resulting in formulas which are simpler and easier to work with than their complex-valued
counterparts.

For these reasons, we direct our attention to the question of triplex roots of polynomials. It may seem
natural to start with polynomial equations of small degree, perhaps quadratic or cubic equations, and
attempt to derive some kind of formula that can be used to �nd triplex solutions based on the rules for
triplex addition and multiplication. This is certainly possible, but it would undoubtedly be a painstaking
ordeal. Arithmetic with triplex numbers is, after all, at least 3/2 times as painstaking as arithmetic with
complex numbers.

Instead, one may consider whether more abstract ideas can be applied to help us understand the
structure of the triplex numbers. Later in this paper, we will use sophisticated machinery to prove
some general facts about triplex roots of polynomials. As it turns out, if a polynomial f(x) has no real
roots, then f(x) has no roots in the triplex numbers, either. Perhaps disappointingly, this means that
the triplex numbers are strictly inferior to the complex numbers, at least in terms of the quantity of
polynomials which can be solved.

However, if f(x) has real roots, or some mixture of real roots and complex roots, then there are
actually numerous triplex roots. In fact, in this situation, the number of triplex roots is generally greater
than both the number of real roots and the number of complex roots.

Let us consider the polynomial f(x) = x7+x6− 6x5−x2−x+6. There are three real roots and four
strictly complex roots. We will not list them explicitly here, but we assure the reader that they exist. It
turns out that f(x) has a grand total of 18 strictly triplex roots. So as to avoid cluttering the page, we
again invoke the reader's trust as to the existence of all of these roots.

However, we invite the reader to check that

ζ1 = −1

3
+

2

3
i+

2

3
j

ζ2 =
1

3
− 5

3
i− 5

3
j

are indeed roots of f(x).
Triplex roots of polynomials have another interesting aspect of note. One can de�ne an operation

analogous to complex conjugation on the triplex numbers, namely the action of weak conjugation. The
weak conjugate of a triplex number is found by swapping the i-component andj-component of the number.
It turns out that if a polynomial f(x) has some triplex root, say ζ1, then the weak conjugate of ζ1 must
also be a root of f(x).

Applying this fact to the example considered above is unenlightening, because ζ1 and ζ2 are invariant
under weak conjugation. In this paper, we refer to such triplex numbers as �at.

Consider instead the polynomial g(x) = x3 − 4x2 + 6x− 24. The reader may check that

τ1 =
4

3
+

(
4

3
+

√
2

)
i+

(
4

3
−

√
2

)
j

as well as the weak conjugate

(τ1)
− =

4

3
+

(
4

3
−

√
2

)
i+

(
4

3
+
√
2

)
j

are both roots of g(x). This illustrates that triplex roots of polynomials always come in conjugate pairs.
This is a property shared with the complex numbers, though the notion of conjugation di�ers with the
triplex numbers.

Perhaps unsurprisingly, there is a close relationship between the triplex roots of a polynomial and
the real and complex roots. It is our aim to elucidate this relationship. We do so chie�y in Section 4.

In the next few sections, we provide some needed de�nitions, describe preliminary notation, and
explore some basic properties of T through the lens of a more intuitive number system.
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2 Preliminaries

De�nition 2.1. A triplex number is an ordered triplet of numbers, written

t := (a, b, c),

where a, b, c ∈ R.

We will use both the ordered triplet notation, as well as its familiar equivalent notation

t = a+ bi+ cj

interchangeably without mention.

De�nition 2.2. Given a triplex number t = (a, b, c) with a, b, c ∈ R, a is referred to as the real
component, b is referred to as the i-component, and c is referred to as the j-component.

De�nition 2.3. A triplex number of the form t = (a, k, k) with a, k ∈ R is referred to as �at.

De�nition 2.4. 1, i and j are referred to as the basis elements of T. The set

B := {1, i, j}

denotes the set of basis elements of T.

De�nition 2.5. The set of all triplex numbers is denoted

T := {(a, b, c) | a, b, c ∈ R}.

De�nition 2.6. Two triplex numbers t1 = (a1, b1, c1) and t2 = (a2, b2, c2) are said to be equal if their
corresponding real number entries are equal. That is,

t1 = t2 ⇐⇒ a1 = a2 and b1 = b2 and c1 = c2.

It is straightforward to check that triplex equality is re�exive, symmetric, and transitive. Hence,
triplex equality de�nes an equivalence relation on T.

De�nition 2.7. Triplex addition is de�ned as follows: given two triplex numbers t1 = (a1, b1, c2) and
t2 = (a2, b2, c2), then the sum is given by the map t1 + t2 : T× T → T de�ned by

t1 + t2 7−→ (a1 + a2, b1 + b2, c1 + c2).

From De�nition 2.7, it immediately follows that addition is associative and commutative. The additive
identity is (0, 0, 0):

(a, b, c) + (0, 0, 0) = (a, b, c).

Thus, (T,+) forms an abelian group. Moreover, as an additive group (T,+) is isomorphic to R3.

De�nition 2.8. Triplex multiplication is de�ned as follows: given two triplex numbers t1 = (a1, b1, c2)
and t2 = (a2, b2, c2), then the product t1 ∗ t2 is given by the map t1 ∗ t2 : T× T → T de�ned by

t1 ∗ t2 7−→ (a1a2 + b1c2 + c1b2, a1b2 + b1a2 + c1c2, a1c2 + b1b2 + c1a2).

It follows from De�nition 2.8 that triplex multiplication is associative, commutative, and distributes
over addition. The multiplicative identity is (1, 0, 0):

(a, b, c) ∗ (1, 0, 0) = (a, b, c).

Thus, (T,+, ∗) forms a commutative ring with unity, hereafter denoted simply T.

De�nition 2.9. Scalar multiplication for triplex numbers is de�ned as follows: given a scalar x ∈ R and
a triplex number t = (a, b, c), the scalar multiple is given by

xt := (xa, xb, xc).

From De�nition 2.9 it immediately follows that scalar multiplication is distributive with respect to
both triplex addition and addition on R. Hence, T forms a vector space over R. As a vector space, T is
isomorphic to R3.

Together with the bilinear product de�ned in De�nition 2.8, T forms a unital associative algebra over
the reals.
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3 Properties of the triplex numbers

3.1 Relationship with real-complex numbers

There are several clues that there are may be alternative ways to view the triplex numbers. Consider
the polynomial f(x) = x3 − 1. Its three complex roots are the cubic roots of unity:

x1 = 1

x2 = e
2
3πi

x3 = e
4
3πi.

One may observe that these roots under multiplication exhibit the same behavior as the basis elements
of T under multiplication:

x2
2 = x3

x2
3 = x2

x2x3 = x3x2 = 1.

A classic result of elementary ring theory is the fact that C ∼= R[x]/
〈
x2 + 1

〉
. In a sense, one

may view this as a construction of the complex numbers from the reals by �identifying� the square of the
indeterminate with −1 in the polynomial ring. Elements of R[x]/

〈
x2 + 1

〉
have the form bx+a+

〈
x2 + 1

〉
,

where x behaves identically to the imaginary unit i. The quotient ring turns out to be a �eld which is
isomorphic to the complex numbers.

It stands to reason that a similar construction with the polynomial x3 − 1 ought to be possible. The
quotient ring R[x]/

〈
x3 − 1

〉
should be a ring in which one has adjoined to R two new elements which

behave exactly as the complex roots of x3−1 do. The resulting quotient ring should then be functionally
the same as T.

We will verify this relationship formally in Proposition 3.1, but before we do so, let us have one more
insight. Equipped with ordinary multiplication, the set G := {x1, x2, x3} of cubic roots of unity forms a
group, namely the cyclic group of order 3. This is illustrated in Figure 3.1.

Figure 3.1: The group G acting on itself by multiplication, with group actions by x2 and x3 shown in
blue and red, respectively.

Curiously, in our description of the quotient ring R[x]/
〈
x3 − 1

〉
, we have simultaneously described

R[C3], the group ring of C3 over R. As it turns out, they are isomorphic. Proposition 5.1 states far more
generally that, given an arbitrary �eldK, there is an isomorphism ofK-algebrasK[x]/ ⟨xn − 1⟩ ∼= K[Cn].
This is fairly easy to visualize: When the roots of a polynomial form a group under multiplication, the
quotient ring becomes the group ring of the corresponding group over K. If we take K to be the
�eld of complex numbers, then the only multiplicative subgroups are the cyclic subgroups of order n,
corresponding precisely so the sets of nth roots of unity. In this case, the polynomial must take the form
axn − a, where a ∈ C.

Let us move our attention back to the triplex numbers and verify that T and R[x]/
〈
x3 − 1

〉
are in

fact isomorphic. For the sake of brevity, [·] is used to denote equivalence class when there is no real risk
of confusion.
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Proposition 3.1. The map ϕ : T → R[x]/
〈
x3 − 1

〉
de�ned by

ϕ : u+ vi+ wj 7−→
[
u+ vx+ wx2

]
where u, v, w ∈ R, is an isomorphism of R-algebras.

Proof. Trivially, ϕ preserves the unity of both rings. It is straightforward to check that ϕ is surjective,
injective and therefore a bijection. It is similarly straightforward (though somewhat laborious) to check
that ϕ respects the addition and multiplication operations of both rings. Clearly, ϕ respects scalar
multiplication as well. We will omit the laborious computations here.

Proposition 3.1 allows us to continue our study of the structure and properties of T through the
quotient ring R[x]/

〈
x3 − 1

〉
. Our next step is to note that the polynomial x3 − 1 is reducible over R:

x3 − 1 = (x− 1)(x2 + x+ 1).

The Chinese Remainder Theorem for rings then implies the following isomorphism:

R[x]/
〈
x3 − 1

〉 ∼= R[x]/ ⟨x− 1⟩ × R[x]/
〈
x2 + x+ 1

〉
.

We will construct the isomorphism explicitly soon, but for now, let us note that its existence gives
us several properties of T �for free,� without the need to conduct any triplex arithmetic whatsoever. In
particular, we may conclude right away that T is not an integral domain, and hence not a �eld.

Corollary 3.1. T is not an integral domain.

Proof. The property of being an integral domain is preserved by isomorphisms, and the product ring
R[x]/ ⟨x− 1⟩ × R[x]/

〈
x2 + x+ 1

〉
is not an integral domain. As a fairly trivial example, consider the

pairs1 (0, 1), (1, 0) and their product:

(0, 1) ∗ (1, 0) = (0, 0).

We see that (0, 1) and (1, 0) are zero divisors in the product ring, hence T is not an integral domain.

As a result of this observation, some of the �nice� properties of working with our usual number systems
R and C fail in the triplex numbers. This would include the cancellation property: for a, b, c ∈ T, if we
have a ̸= 0, then ab = ac does not imply b = c, as in the reals. In conclusion, we must be careful when
�doing algebra� on the triplex numbers.

We continue now along our journey. For the sake of brevity, we will hereafter denote

Q = R[x]/
〈
x3 − 1

〉
P1 = R[x]/ ⟨x− 1⟩
P2 = R[x]/

〈
x2 + x+ 1

〉
.

De�ne the maps

σ1 : Q −→ P1

σ2 : Q −→ P2

as follows:

σ1 :
[
u+ vx+ wx2

]
7−→ [u+ v + w]

σ2 :
[
u+ vx+ wx2

]
7−→ [(u− w) + (v − w)x]

where [·] denotes equivalence class in the respective quotient ring.
It is straightforward to check that σ1 and σ2 are R-algebra homomorphisms. Note that kerσ1 is the

set of all elements whose coe�cients sum to 0, while kerσ2 is the set of all elements whose coe�cients
are equal.

Again, we de�ne a set of maps

1To avoid unnecessary visual clutter, we have opted not to indicate + ⟨x− 1⟩ and +
〈
x2 + x+ 1

〉
everywhere these would

normally appear. The reader is nevertheless reminded that each component in the pair is an element of the respective

quotient ring.
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ω1 : P1 −→ R
ω2 : P2 −→ C

as follows:

ω1 : [a] −→ a

ω2 : [a+ bx] −→ a− b

2
+

bi
√
3

2
.

One may check that ω1 and ω2 are R-algebra isomorphisms. Again, we omit the laborious computa-
tions.

At this point, we take the product of maps ⟨ω1 ◦ σ1, ω2 ◦ σ2⟩, obtaining a map from R[x]/
〈
x3 − 1

〉
to R× C.

Theorem 3.1. De�ne the functions

α(u, v, w) = u+ v + w

β(u, v, w) = u− v

2
− w

2

γ(u, v, w) =

√
3

2
(v − w)

where u, v, w ∈ R. Then the map Ψ : R[x]/
〈
x3 − 1

〉
→ R× C de�ned by

Ψ :
[
u+ vx+ wx2

]
7−→ (α, β + iγ)

is an isomorphism of R-algebras.

Proof. The map Ψ = ⟨ω1 ◦ σ1, ω2 ◦ σ2⟩ has been constructed in such a fashion that the diagram in Figure
3.2 commutes. By the universal propery of the product, Ψ must be the unique such morphism. We have
isomorphisms ω1 and ω2 between the factor algebras, hence by Proposition 5.2, the products must be
isomorphic. It follows that Ψ must have an inverse which is also an R-algebra homomorphism.

P2 C

T Q R× C

P1 R

ϕ

σ2

σ1

ω1

ω2

Ψ

π2

π1

Figure 3.2: Diagram showing maps from T to R× C.

Theorem 3.2. De�ne the functions

u(α, β, γ) =
1

3
(α+ 2β)

v(α, β, γ) =
1

3
(α− β +

√
3γ)

w(α, β, γ) =
1

3
(α− β −

√
3γ)

where α, β, γ ∈ R. Then the map Ψ−1 : R× C → R[x]/
〈
x3 − 1

〉
de�ned by

Ψ−1 : (α, β + iγ) 7−→
[
u(α, β, γ) + v(α, β, γ)x+ w(α, β, γ)x2

]
is an isomorphism of R-algebras. Moreover, Ψ−1 is the inverse of Ψ.
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Proof. Again we have constructed a map in such a fashion that the diagram in Figure 3.2, this time
seen with the arrows turned around, commutes. We invoke Proposition 5.2, concluding that Ψ−1 is the
inverse of Ψ.

For the rest of this paper, we de�ne the map Φ : T → R×C to be the composition Φ = Ψ ◦ ϕ, where
ϕ is as de�ned in the previous section, and Φ−1 : R × C → T to be the composition Φ−1 = ϕ−1 ◦ Ψ−1.
Clearly, Φ and Φ−1 are isomorphisms of R-algebras.

The maps Φ and Φ−1 are quite useful. They provide a convenient means of converting back and
forth between triplex numbers and elements of R×C. These are numbers of the form (α, β + iγ), where
α, β, γ ∈ R, hereafter referred to as real-complex numbers. It is often easier to ask and answer questions
about the properties of R × C, which is a ring with a much more intuitive arithmetic. Structure and
properties which are preserved by isomorphisms will automatically be translatable to T.

Φ and Φ−1 also show a clear relationship between the triplex conjugate and the complex conjugate of
the number β+iγ in the corresponding real-complex pair: given a triplex number, if v and w swap places,
then the sign of γ is negated in the real-complex pair obtained by Φ; conversely, given a real-complex
pair, if γ is negated, then v and w swap places in the triplex number obtained by Ψ−1.

Any real-complex pair with γ = 0 corresponds to a triplex number with v = w. Hence, the set of
triplex numbers which are invariant under the action of swapping v and w are those whose i-component
and j-component are equal, and the set of corresponding complex numbers with γ = 0 are likewise
invariant under this same action.

3.2 Zero divisors

By Corollary 3.1, T is not an integral domain, which indicates the presence of zero divisors. One may
wonder as to what these zero divisors are, so that one may take the necessary precautions when �doing
algebra.�

If one simply plays around with triplex numbers for any length of time, one may stumble on some
zero divisors. Consider the triplex numbers ζ1 = 2 + 2i− 4j and ζ2 = 1 + i+ j. We invite the reader to
check that their product (2 + 2i− 4j)(1 + i+ j) is in fact zero. Hence, ζ1 and ζ2 are zero divisors.

The astute reader may have noticed that the sum of ζ1's components is zero, while ζ2 has components
which are all equal. Carrying out the multiplication, we see that each of the respective components vanish.
This would suggest at least two sets of zero divisors: triplex numbers whose components sum to 0, and
triplex numbers whose components are all equal. Multiplying a triplex number from the �rst set by a
triplex number from the second set should result in zero.

Indeed, one may select some other triplex numbers matching these criteria and verify that this seems
to be the case. It remains to be shown however that these are the only zero divisors in T. Do there exist
other, less obvious zero divisors?

Our means of translating between triplex numbers and real-complex numbers permits a swift answer
to this question. Observe that ζ1 corresponds to the real-complex pair (0, 1+ i

√
3), while ζ2 corresponds

to (3, 0). It is easy to see that in general, zero divisors in R×C must be of the form (α, 0) or (0, β+ iγ),
where α, β, γ ∈ R. Translating to T via Φ−1, we �nd that the zero divisors are precisely the sets described
in the preceding paragraphs. Note that these sets are precisely kerσ1 ◦ ϕ and kerσ2 ◦ ϕ, respectively,
and that this relationship is actually rather unsurprising given the nature of the product ring.

3.3 Idempotents

In this subsection, we wish to �nd the idempotent elements of T. Any unital ring has at least two
idempotents, namely the additive and multiplicative identities. Hence, 0 and 1 are idempotent in T.

To �nd the remaining idempotents, we will search for idempotent real-complex pairs, and then trans-
late these numbers to triplex form by the map Φ−1. Note that an element t = u+ vi+wj is idempotent
if and only if α2 = α and (β + iγ)2 = β + iγ both hold for the corresponding real-complex pair.

It is known that the only idempotents in R are 0 and 1. Clearly, α ∈ {0, 1} are the only possibilities
for the real part. The complex part reduces to solving the equation

β2 − β − γ2 + (2βγ − γ)i = 0

in β, γ. The equation is true if and only if β2 − β − γ2 = 0 and 2βγ − γ = 0. The second condition
implies β = 1

2 or γ = 0, while the �rst condition implies γ = ±
√
β2 − β. Assuming that β = 1

2 , by the
�rst condition γ is a complex number, a contradiction, so β = 1

2 cannot be a solution. Hence, γ = 0,

7



which then implies β2 = β. It follows that β = 0 or β = 1. Hence, the only idempotents of R × C are
the four elements (0, 0), (0, 1), (1, 0) and (1, 1).

Each idempotent real-complex pair corresponds to an idempotent triplex number. Using Φ−1 to
translate back to T, we see that the idempotents are

η0 = 0

η1 =
2

3
− 1

3
i− 1

3
j

η2 =
1

3
+

1

3
i+

1

3
j

η3 = 1.

Note that η1 is in kerσ1 ◦ ϕ, and η2 is in kerσ2 ◦ ϕ.

3.4 Triplex conjugation

An essential feature of the regular complex numbers is the complex conjugate: given any complex number
z = x + iy, the conjugate is de�ned to be z̄ = x − iy, and has a number of interesting properties. In
particular, the complex norm may be de�ned in terms of the conjugate. The complex conjugate is among
the �rst objects studied in complex analysis, and in our study of the triplex numbers it would seem a
natural idea to de�ne triplex conjugation in some meaningful way.

3.4.1 Weak conjugation

De�nition 3.1. Weak conjugation is the map T → T de�ned by

(u+ vi+ wj)− 7−→ u+ wi+ vj.

We will variously denote the weak conjugate of a triplex number z by either z− or Wk(z).
It is easy to check that weak conjugation is an automorphism of T. In fact, by Proposition 3.3 it is

the only nontrivial automorphism of T. Moreover, weak conjugation �xes elements of R.
Additionally, weak conjugation is an involution: for any triplex number z = u + vi + wj, we have

that (z−)− = z. These are properties that weak conjugation shares with the regular complex conjugate.
Note also that the sets kerσ1 and kerσ2 are closed under weak conjugation.

Weak conjugation with triplex numbers is considerably less useful than regular conjugation with
complex numbers. For one, there is no immediately obvious way to de�ne a norm using it. Nevertheless,
weak conjugation has some interesting properties which make it valuable to study.

One can see that �at triplex numbers are invariant under weak conjugation:

(a+ ki+ kj)− 7−→ a+ ki+ kj.

With the complex numbers, the product of a complex number with its conjugate is strictly real.
However, with the triplex numbers, we note that the product of a triplex number with its weak conjugate
produces another triplex number. For a triplex number z = u+ vi+ wj, we have

zz− = u2 + v2 + w2 + (uv + vw + uw)i+ (uv + vw + uw)j.

However, this product is always a �at triplex number, hence invariant under the action of weak
conjugation. In other words, the following identity holds:

(zz−)− = zz−

This property is shared with the complex conjugate.

Proposition 3.2. The cube roots of 1 in T are the basis elements 1, i, j.

Proof. It is easy to see that the basis elements are cube roots of 1 in T, but it remains to be shown that
they are the only cube roots of 1 in T.

A real-complex pair (α, β + iγ) where α, β, γ ∈ R satis�es (α, β + iγ)3 = 1 if and only if

α3 = 1

(β + iγ)3 = 1.
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Hence, since α is real, α = 1, and β+ iγ is a complex cube root of 1. So, the real-complex cube roots
of 1 are

(1, 1)

(1, e
2πi
3 )

(1, e
4πi
3 ).

Using Φ−1 to translate back to T, we see that these numbers correspond to the basis elements 1, i, j
as desired.

Proposition 3.3. Weak conjugation is an automorphism of T. Moreover, weak conjugation is the only
nontrivial automorphism of T.

Proof. Let θ : T → T be an automorphism of T. Let u+ vi+ wj be a triplex number, with u, v, w ∈ R.
Since R is a subring of T, the restriction θ|R is an automorphism of R. The only automorphism of R is
the identity map, hence θ �xes R. Then

θ(u+ vi+ wj) = θ(u) + θ(vi) + θ(wj)

= θ(u) + θ(v)θ(i) + θ(w)θ(j)

= u+ vθ(i) + wθ(j).

Hence, θ is uniquely determined by its action on the basis elements of T.
Moreover, since θ must preserve 1, we see that

θ(1) = θ(i3)

1 = (θ(i))3.

In other words, θ must send the basis elements i and j to cube roots of 1. By Proposition 3.2, the
only cube roots of 1 are the basis elements themselves. Hence, the only automorphisms of T are the
trivial automorphism sending every element to itself, and the weak conjugation map, which exchanges
the basis elements i and j.

3.4.2 Strong conjugation

De�nition 3.2. Strong conjugation is the map T → T de�ned by

(u+ vi+ wj)∗ 7−→ u2 − vw + (w2 − uv)i+ (v2 − uw)j.

We will also denote strong conjugation in the same manner as the regular complex conjugate, with
the use of the overbar: for a triplex number z, we denote the strong conjugate as either z∗ or z̄.

Strong conjugation takes η1 to η3, and η2 to η0, and η0 to η0, and η3 to η3. More generally, strong
conjugation takes elements of kerσ1 to kerσ2, and elements of kerσ2 to 0.

It is easy to see that strong conjugation is not an automorphism of T; this is a simple consequence of
Proposition 3.3. It is also easy to see that in general, strong conjugation does not �x R. In fact, strong
conjugation restricted to the reals is simply the map taking each element to its square. Hence, strong
conjugation is not an involution.

Strong conjugation does have one desirable property. Namely, the product of a triplex number with
its strong conjugate is strictly real:

(u+ vi+ wj)(u+ vi+ wj)∗ = u3 + v3 + w3 − 3uvw.

This expression may be factored as

(u+ v + w)(u2 − vw + v2 − uw + w2 − uv).

As a result of this, the product of a triplex number z = u+ iv + jw with its strong conjugate is zero
precisely when the sum of its components is zero, or when u = v = w.

Corollary 3.2. The relationship between the weak and strong conjugates is characterized by the following
identity:

Wk(z̄) = Wk(z).

Proof. The proof is left as an exercise to the reader.
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4 Triplex roots of polynomials

At this point, we turn our attention back to the question which captivated our interest in Section 1: how
might one go about �nding triplex roots of polynomial equations? Is there some kind of relationship
between triplex roots of polynomials and the real and complex roots?

Indeed, the maps Φ and Φ−1 provide us with not only a means of easily generating triplex solutions
to polynomial equations should their real and complex solutions already be known, but also allow us to
concretize the relationship between solution sets of polynomial equations in R, C and T.

Let us �rst describe some preliminary notation. For the remainder of this section, �x an arbitrary
ring R with unity.

De�nition 4.1. Let A be an algebra over R. Let

f(x) = a0 · 1 + a1 · x+ a2 · x2 + ...+ an · xn

be a polynomial with coe�cients a0, ..., an ∈ R and indeterminate x. An element ζ ∈ A is said to be a
root of f(x) in A if and only if

a0 · 1A + a1 · ζ + a2 · ζ2 + ...+ an · ζn = 0A

where 0A and 1A denote the additive and multiplicative identities of A, respectively.

De�nition 4.2. The set of roots of a polynomial f(x) in an R-algebra A is referred to as the omega-set
of f in A, written Ωf (A). More precisely:

Ωf (A) := {x ∈ A | f(x) = 0A}.

Proposition 4.1. Let A and B be R-algebras and the map ϕ : A → B a homomorphism of R-algebras.
If ζ ∈ A is a root of f(x) in A then ϕ(ζ) is necessarily a root of f(x) in B.

Proof. ζ ∈ A is a root of f(x) implies that

ϕ(a0 · 1A + a1 · ζ + a2 · ζ2 + ...+ an · ζn) = ϕ(0A).

Because ϕ is an R-algebra homomorphism, ϕ commutes with addition, multiplication, and scalar
multiplication. Moreover, for any k ∈ N, ϕ(ζk) = ϕ(ζ)k. Hence, the above condition is equivalent to

a0 · 1B + a1 · ϕ(ζ) + a2 · ϕ(ζ)2 + ...+ an · ϕ(ζ)n = 0B

which means that ϕ(ζ) is a root of f(x) in B.

As a consequence of Proposition 4.1, an R-algebra homomorphism ϕ : A → B induces a mapping
ηf (ϕ) : Ωf (A) → Ωf (B), which is simply the restriction of ϕ to Ωf (A). If ϕ is injective, then this
mapping is necessarily injective, and if ϕ is bijective, then this mapping is necessarily bijective.

Lemma 4.1. If t ∈ T is a root of f(x) in T then there exists some z0 ∈ C and x0 ∈ R which are
roots of f(x) in C and R, respectively. Conversely, let z0 ∈ C and x0 ∈ R be roots of f(x) in C and R,
respectively. Then Φ−1 [(x0, z0)] is a root of f(x) in T.

Proof. Let t ∈ T be a root of f(x) in T. By Proposition 4.1, this corresponds to precisely one real-
complex root, namely Φ(t) = (x0, z0), where x0 ∈ R and z0 ∈ C. Because we have morphisms from T
onto R and C, namely the projection maps after mapping to R×C, Proposition 4.1 implies that x0 and
z0 are roots of f(x) in R and C, respectively.

To convince yourself of the truth of the converse direction, one may begin with x0 ∈ R and z0 ∈ C
which are roots of f(x) in R and C, respectively. Clearly, (x0, z0) is a root of f(x) in R × C. By
Proposition 4.1, Φ−1 [(x0, z0)] is a root of f(x) in T.

Lemma 4.2. Let X0 be the set of roots of f(x) in R and Z0 the set of roots of f(x) in C (so that X0 is
a subset of Z0). Then T0, the set of roots of f(x) in T, has cardinality |X0| · |Z0|.

Proof. The proof follows more or less immediately from Lemma 4.1. Counting the roots of f(x) in T
amounts to counting the roots in R × C, which amounts to counting the possible ways that one can
arrange (x0, z0) with x0 ∈ R and z0 ∈ C roots of f(x) in R and C, respectively.
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Lemma 4.3. If f(x) has no roots in R, then f(x) has no roots in T.

Proof. This is an obvious consequence of Lemma 4.2.

Proposition 4.2. If t = u+ vi+ wj ∈ T is a root of f(x), then t− is also a root of f(x).

Proof. Weak conjugation is an automorphism of T, hence by Proposition 4.1, t− is a root of f(x) in
T.

Proposition 4.2 shows us that triplex solutions to polynomial equations always come in conjugate
pairs, which is a property shared with complex numbers.

5 Miscellaneous results

In this section, we have collected some miscellaneous results which may have been used to justify side
notes or motivate certain proof steps. Proposition 5.1 for example is a vast generalization of the idea that
the triplex numbers may be viewed simultaneously as the quotient ring R[x]/

〈
x3 − 1

〉
and the group

ring of C3 over R.

Proposition 5.1. Let K be a �eld, and K[x] the ring of polynomials over K with indeterminate x. For
any n ∈ N there is an isomorphism of K-algebras

K[x]/ ⟨xn − 1⟩ ∼= K[Cn]

where Cn denotes the cyclic group of order n, and K[Cn] is the group ring of Cn over K.

Proof. Denote the elements of Cn as

Cn = {g0, g1, g2, ..., gn−1},

where g0 denotes the identity, and g1 the generator.
De�ne a map ι : Cn → K[x]/ ⟨xn − 1⟩× as follows:

ι : gk 7−→ xk + ⟨xn − 1⟩ .

Because xn−kxk = xn = 1 + ⟨xn − 1⟩, xk + ⟨xn − 1⟩ is a unit. It is easy to check that ι is a
homomorphism of groups. Moreover, ι is injective.

Let S be some arbitrary K-algebra and f : Cn → S× a K-algebra homomorphism. De�ne a map
f̄ : K[x]/ ⟨xn − 1⟩ → S as follows:

f̄ : p(x) + ⟨xn − 1⟩ 7−→ p(f(g1)).

Intuitively, f̄ evaluates a polynomial p(x), which itself is a K-linear combination of powers of x, at
the image of the generator g1 under f . The result of this evaluation is a K-linear combination of powers
of this image, hence �extending� the map f to S.

We must show that f̄ is well-de�ned. Let p(x), q(x) + ⟨xn − 1⟩ ∈ K[x]/ ⟨xn − 1⟩ such that

p(x) + ⟨xn − 1⟩ = q(x) + ⟨xn − 1⟩ .

This is equivalent to the condition that p(x)− q(x) = r(x)(xn − 1) for some r(x) ∈ K[x]. Then

f̄(p(x) + ⟨xn − 1⟩) = p(f(g1))

f̄(q(x) + ⟨xn − 1⟩) = q(f(g1))

and
p(f(g1))− q(f(g1)) = r(f(g1))((f(g1))

n − 1).

Using the fact that f is a K-algebra homomorphism, we can simplify the condition to

p(f(g1)) = q(f(g1)),

showing that the images of p(x) and q(x) under f̄ are equal. Hence f̄ is well-de�ned.
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It is straightforward to show that f̄ is a K-algebra homomorphism. We will omit the laborious
computations here, but the astute reader will note that they follow more or less immediately from the
de�nition of f̄ .

We want to show that f̄× ◦ ι = f . Letting gk ∈ Cn we have ι(gk) = xk + ⟨xn − 1⟩. Then

f̄×(xk + ⟨xn − 1⟩) = (f(g1))
k.

This is equivalent to f((g1)
k) = f(gk). Hence, f̄

× ◦ ι = f , which was to be shown.
Finally, we must show that f̄ is unique. Assume that there is some morphism f̄ ′ : K[x]/ ⟨xn − 1⟩ → S

such that f̄ ′× ◦ ι = f̄× ◦ ι = f . Then

f̄ ′×(xk + ⟨xn − 1⟩) = f(gk).

Hence, f̄ and f̄ ′ agree on powers of x + ⟨xn − 1⟩. Elements in K[x]/ ⟨xn − 1⟩ may be represented as
K-linear combinations of powers of x+ ⟨xn − 1⟩:

p(x) + ⟨xn − 1⟩ = a0 + a1x+ ...+ an−1x
n−1 + ⟨xn − 1⟩

for a0, a1, ..., an−1 ∈ K. Becausef̄ ′ is a K-algebra homomorphism:

f̄ ′(p(x) + ⟨xn − 1⟩) = f̄ ′(a0 + a1x+ ...+ an−1x
n−1 + ⟨xn − 1⟩)

= a0 + a1f(g1) + ...+ an−1f(gn−1)

which is equal to the image of p(x)+⟨xn − 1⟩ under f̄ . Hence, f̄ and f̄ ′ agree on allK-linear combinations
of powers of x+ ⟨xn − 1⟩, which is the same as their domains, so f̄ = f̄ ′.

Hence, f̄ is the unique morphism making the diagram in Figure 5.1 commute.

Cn K[x]/ ⟨xn − 1⟩× K[x]/ ⟨xn − 1⟩

S× S

ι

f
f̄× f̄

Figure 5.1: Diagram showing f̄ and its restriction f̄×.

Because K[x]/ ⟨xn − 1⟩ satis�es the universal property of the group ring, it is canonically isomorphic
to the group ring.

Proposition 5.2. Let A,B,X, Y be objects in some category C. Let X × Y and A× B be objects in C
equipped with morphisms:

π1 : X × Y → X

π2 : X × Y → Y

σ1 : A×B → A

σ2 : A×B → B

and suppose that X × Y and A × B satisfy the universal property of products in C. Additionally, let
ω1 : A → X and ω2 : B → Y be isomorphisms. Then X × Y and A×B are necessarily isomorphic.

Proof. By the universal property of the product, there are unique morphisms f : A × B → X × Y and
f̄ : X × Y → A×B such that

π1 ◦ f = ω1 ◦ σ1

π2 ◦ f = ω2 ◦ σ2

σ1 ◦ f̄ = ω−1
1 ◦ π1

σ2 ◦ f̄ = ω−1
2 ◦ π2
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B Y

A×B X × Y

A X

π2

π1

σ2

σ1

ω2

ω−1
1

f

f̄

ω−1
2

ω1

Figure 5.2: The products A×B, X × Y and their projections.

In other words, the diagram in Figure 5.2 commutes in the forward and backward directions. Composing
f and f̄ , we obtain morphisms f ◦ f̄ : X × Y → X × Y and f̄ ◦ f : A×B → A×B.

By the commutativity of the diagram, and the fact that ω1 and ω2 are isomorphisms, we �nd that

π1 = π1 ◦ f ◦ f̄
π2 = π2 ◦ f ◦ f̄
σ1 = σ1 ◦ f̄ ◦ f
σ1 = σ1 ◦ f̄ ◦ f

hence the diagram in Figure 5.3 commutes.

A×B

A A×B B

σ1 σ2

σ1 σ2

f̄◦f

Figure 5.3: The composition f̄ ◦ f and projections from A×B.

By the universal property of the product A × B, the morphism f̄ ◦ f must be the unique such
morphism. However, we �nd also that idA×B makes the same diagram commute. Hence f̄ ◦ f = idA×B .

We may apply a similar line of reasoning to X × Y and its projections, �nding that f ◦ f̄ = idX×Y .
Hence, f and f̄ are inverse morphisms, and X × Y and A×B are isomorphic.

6 Matrix representation

It is also possible to represent T as a matrix ring. In fact, there are multiple ways to do this. We describe
one of them in this section.

As discussed earlier in the paper, we may view T as the group ring R[C3]. [1] details a process
for constructing a matrix ring from a given group ring. Applied to R[C3], this process leads us to the
following representation.

We de�ne the map Γ : T → M3(R) by

Γ : u+ vi+ wj 7−→

u v w
w u v
v w u


where u, v, w ∈ R.

The determinant of the matrix representation of a triplex number is related to the product of the
number with its strong conjugate as follows:

zz∗ = det Γ(z).

This is a property shared with the matrix representation of complex numbers.
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7 Future directions

In this paper, we have examined some of the properties of the triplex numbers, and we have gained
especially rich insights about the structure of T by looking through the lens of R× C. In particular, we
have learned a great deal about triplex roots of polynomials and the nature of their relationship with
real and complex roots.

Future work with the triplex numbers could take one of several directions. Our results about triplex
roots of polynomial equations, while insightful, are also broad. As was noted in Section 1, it may be
interesting to consider whether triplex numbers facilitate solving certain kinds of polynomial equations.
It would seem natural to look at roots of cubic polynomials in T, considering that the cubic roots of
unity are in some sense directly encoded in the triplex numbers as basis elements.

The author is also inclined to attempt to develop some theory of analysis for triplex functions. In
some preliminary work, the author was able to develop a notion of di�erentiation for triplex-valued
functions and state triplex analogues of the Cauchy-Riemann equations, with which one can show, for
example, that polynomial functions on T are di�erentiable everywhere, as with the complex numbers.

It also appears to be possible to de�ne triplex analogues of the Wirtinger derivatives. However, the
triplex Wirtinger operators fail to satisfy some important properties, the extent of which appears to be
related to the way in which the notion of triplex conjugation diverges into the two distinct concepts of
weak and strong conjugation. In the complex numbers, these concepts can be seen to coincide in the
same action, which appears to explain some of the well-behavedness of the complex Wirtinger operators.
Future work might aim to elucidate this relationship.
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